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Introduction 

 

 
• Hydrogen is more and more attractive as an efficient and environmental friendly source of 

energy 
 

• It is considered as a promising fuel of the future 
 

• European roadmap for hydrogen and fuel cells published by European Commission in 
“Hydrogen Energy and Fuel Cells: A vision of our future” (EUR 20719, EN 2003)  

• from fossil fuel-based economy to hydrogen oriented economy 

• developing and implementing systems for hydrogen production from renewable 
electricity and biomass 

• research and development of other carbon-free hydrogen sources, such as solar 
thermal and advanced nuclear should be continued 

 

• United States Department of Energy „Toward a more secure and cleaner energy future for 
America. National hydrogen energy roadmap” (2002) 

•  lower the hydrogen production cost and to improve efficiency  

• improving existing commercial processes (e.g. steam methane reformation) and 
development new advanced production techniques (e.g. biological methods, nuclear 
and solar-powered) 

EmHyTeC 2012, Hammamet, Tunisia, September 11-14, 2012 
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Introduction 

 

 

 

EmHyTeC 2012, Hammamet, Tunisia, September 11-14, 2012 

• Our motivation arises from the growing interest in the hydrogen production technologies 
 

• Investigation concerns microwave (2.45 GHz) atmospheric pressure plasma source (MPS) for 

hydrogen production via methane conversion 
 

 

• Microwave plasma applications: hydrocarbons destruction [Jasinski et al., 2004], noble gas 

purification [Rostaing et al., 2000], surface treatment during cars production, aviation industry, 

textile and biomedical engineering [Chu et al., 2002, Denes et al., 2004, Tendero et al., 2006, 

Morent et al., 2008], hydrogen production from decomposition of methanol [Henriques et al., 

2010], hydrogen production from water [Pineda et al., 2007] 

 

• Hydrogen production reactions from methane: 

 CH4  C+2H2       (pyrolysis) 

 CH4+CO2  CO+2H2     (dry reforming) 

 CH4+H2O  CO+3H2     (steam reforming) 

 CH4+0.5O2  CO+2H2     (partial oxidation) 

 2CH4+O2+CO2  3CO+3H2+H2O   (auto-thermal reforming) 

 4CH4+O2+ 2H2O  4CO+10H2   (auto-thermal reforming) 
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Experimental setup 

 

 

Diagram of the experimental setup 

EmHyTeC 2012, Hammamet, Tunisia, September 11-14, 2012 

Parameters: 

Microwave frequency: 2.45 GHz 

Microwave power: up to 6 kW 

Working gas: N2, Air, CO2, CH4,  

Gas flow rate: up to 200 l/min 

Pressure: atmospheric 

 

OES–Optical Emission Spectroscopy 
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Experimental setup 

 

 

Photo of the experimental setup 

EmHyTeC 2012, Hammamet, Tunisia, September 11-14, 2012 
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Waveguide-supplied coaxial-line-based MPS 

 

 

Schematic view of the waveguide-supplied coaxial-line-based MPS  

EmHyTeC 2012, Hammamet, Tunisia, September 11-14, 2012 
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Waveguide-supplied metal-cylinder-based MPS  

 

EmHyTeC 2012, Hammamet, Tunisia, September 11-14, 2012 

Schematic view of the waveguide-supplied metal-cylinder-based MPS  
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Waveguide-supplied MPS 

 

 

Photo of the MPS  

EmHyTeC 2012, Hammamet, Tunisia, September 11-14, 2012 

Gas 

inlet 

Gas 

inlet 

Gas 

inlet Gas 

inlet 

Scheme of the swirl gas inlets 
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Results 

 

 

 

EmHyTeC 2012, Hammamet, Tunisia, September 11-14, 2012 

 

• Tuning characteristics of the MPSs – to determine the efficiency of microwave power 

transfer to the plasma and stability of MPSs operation 

 

• Visualization of the plasma flame – photos of the methane plasma flame for different 

working conditions 

 

• Spectroscopic diagnostics – in the meaning of Optical Emission Spectroscopy, to 

determine the gas temperature 

 

• Hydrogen production via methane conversion – hydrogen production rate and energy 

efficiency  
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Results: Tuning characteristics of the MPS 

 

 

 

Tuning characteristics of the waveguide-supplied 

coaxial-line-based MPS measured for inner 

cylindrical electrode protruding length d=90 mm 

and incident microwave power PI=2000 W 

EmHyTeC 2012, Hammamet, Tunisia, September 11-14, 2012 
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tuning by using three stub tuner 
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Results: Visualization of the plasma flame 

 

 

 

EmHyTeC 2012, Hammamet, Tunisia, September 11-14, 2012 

Front view of the methane plasma generated in the 

waveguide-supplied coaxial-line-based MPS at different 

flow rates and absorbed microwave powers  

  b)   

Bottom view of the plasma : 

in the waveguide-supplied coaxial-line MPS  

CH4 -100 l/min (axial), N2 – 50 l/min (swirl) 

PA = 3500 W 

in the waveguide-supplied metal-cylinder MPS 

CH4 - 50 l/min (swirl), CO2 - 50 l/min (swirl) 

PA = 2800 W 
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Results: Optical Emission Spectroscopy (OES) 

 

 

EmHyTeC 2012, Hammamet, Tunisia, September 11-14, 2012 

Measured emission spectrum of methane plasma 

(absorbed microwave power PA =3 kW, methane 

flow rate - 50 l/min, 15 mm below the inner 

electrode end) 

Parameters: 

spectrometer type: DK-480 (CVI) 

spectrometer: grating1200 gr/mm, 3600 gr/mm 

CCD camera type: SBIG ST-6, 750 × 242  

quartz lens: 50 mm in diameter, focal length – 75 mm  

width of the entrance slit of the spectrometer: 50 μm 

height of the entrance slit of the spectrometer: 20 mm 

opaque screens pinholes diameter: 1 mm 

 

C2 Swan system (A3P → X3P, 506–518 nm band) 

CN violet system (B2S → X2S, 410–422 nm band) 
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Results: Optical Emission Spectroscopy (OES) 

 

 

EmHyTeC 2012, Hammamet, Tunisia, September 11-14, 2012 
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Results: Hydrogen production using coaxial-line-based MPS 

 

 

 

EmHyTeC 2012, Hammamet, Tunisia, September 11-14, 2012 
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Hydrogen production rate (a) and energy efficiency of hydrogen production (b) as a function of 

absorbed microwave power. The waveguide-supplied coaxial-line-based MPS with nitrogen swirl 

flow and inner cylindrical electrode end part made of  brass and tungsten. 
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Results: Hydrogen production using coaxial-line-based MPS 

 

 

 

EmHyTeC 2012, Hammamet, Tunisia, September 11-14, 2012 

Hydrogen production rate (a) and energy efficiency of hydrogen production (b) as a function of 

absorbed microwave power. The waveguide-supplied coaxial-line-based MPS with carbon 

dioxide swirl flow and inner cylindrical electrode end part made of  brass. 
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Results: Hydrogen production using coaxial-line-based MPS 

 

 

 

EmHyTeC 2012, Hammamet, Tunisia, September 11-14, 2012 

Comparison of the hydrogen production rate in 

the case of the waveguide-supplied coaxial-line-

based MPS with nitrogen and carbon dioxide 

swirl flow. The inner cylindrical electrode end 

part made of brass.  
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absorbed microwave power. The MPS with 

nitrogen swirl flow and inner cylindrical electrode 

end part made of tungsten.  
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Results: Hydrogen production using metal-cylinder-based MPS 

 

 

 

EmHyTeC 2012, Hammamet, Tunisia, September 11-14, 2012 

Hydrogen production rate (a) and energy efficiency of hydrogen production (b) as a function of 

absorbed microwave power in the case of the waveguide-supplied metal-cylinder-based MPS  
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Summary and conclusions 
 

 

 

• The investigated MPS (coaxial-line-based and metal-cylinder-based) can be operated with  

a good power efficiency and stability 
 

• The MPS can be operated in different gases like nitrogen, air, carbon dioxide, methane with 

microwave power of a few kW with high gas flow rates 
 

• The spectroscopic measurements proved the high gas temperature (4000-6000 K) what makes 

the MPS an attractive tool for hydrogen production via hydrocarbon conversion 
 

• Results concerning conversion of methane give the hydrogen production rate and energy 

efficiency up to:  

• 800 NL[H2]/h  and  250 NL[H2]/kWh  
 

• The obtained experimental results allow to conclude that our MPS had a high potential for 

hydrogen production via hydrocarbon conversion 
 

• Further test are under preparation 
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